
Ave et Vale... We regret to announce that this is
the next to the last issue of the SuperPET Gazette,
not from choice but from necessity. The membership

in ISPUG for a time exceeded 1200— but, after the end of production of SPET was
announced in these pages, it slowly began to erode. New memberships no longer
compensated for those we lost. We sharpened our pencil and calculated the point
at which we could no longer support the overhead of office rent, a telephone at
business rates, the costs of correpondence and long-distance calls, equipment
maintenance and all the rest. The figures told us we'd go broke quickly with a
membership of less than 500. We watched the membership figures slowly decline,
held our breath, and hoped for the best. Alas...
Renewals and new menberships haven't arrived in sufficient numbers. We must now
plan to cease publication after the June/July issue. We'll carry those whose
subscriptions expire with this issue to the next and last one; please do not
.send in any more renewals.
The last issue will provide a list of all existing SuperPET software from ISPUG.
We'll continue to provide disks and other ISPUG material so long as our SuperPET
stands up, but from the trouble we've encountered in obtaining service, we can't
be optimistic on how long that will be. One of our disk drives has been absent
for maintenance for four months; it remains useless.

After the June/July issue is published, we'll refund the excess membership fees
to each of you. We ask patience on this, because we'll have to write a program
to screen the mail list, determine what is owed, and write the checks. Please
do not ask us to swap what is owed on unexpired memberships for disks and other
material. We'd go quite literally mad trying to keep such accounts by hand or on
an individual basis. Five hundred doesn't sound like much until you print 500
mailing labels. Such a paper dragon's tail is 63 feet long!

Last Chance for Schematics

Schematics for both the 2- and 3-board SuperPETs are offered for the
last time, for $11 U.S. Any orders must be received by June 10. That
day we'll order a specific quantity from our print shop. Order NOW if
you want then! We will ship about June 20; be patient, please.

Change for the sake of change is the state of the present world. We can no long
er call it progress, but an inward spiral into greater complexity and cost with
questionable compensations. Manufacturers who fail to make what the market ex
pects cannot survive. Today, the market expects 16- and 32-bit computers, icons,
mice, graphics, networking, and multitasking, and that is what manufacturers
make. Despite that fact that SuperPET for many of us does all the work we want
done, the machine is no longer supported by maintenance or parts. When a Super
PET becomes seriously ill, where is the ronedy?
Because we enjoy computing and writing about computers, we're going to take a
shot at a journal for the Amiga, called The Amigan Apprentice & Journeyman. We
hope it brings us as many friends as has the Gazette. You have been a splendid
group to work with; witty, patient, clever, intelligent, enjoyable— and forbear
ing. If any of you care to voyage with us upon Migan seas, we'd love to have
you with us. Send a buck for postage only; we'll return the first, 54-page issue
of the Migan A&J.

SuperPET Gazette, Vol. II, No. 10 -273- April/May 1986

ON THE WDLVES OF THE PRESS Man and boy, we have watched the wolves of the
or, American press rend to shreds anyone who showed

GOOD NEWS IS NO NEWS the slightest vulnerability— a wound, an indiscr
etion, the merest trace of blood. The press de

lights in destruction. In that press, of late, we have read shrill cries that
Commodore may soon be bankrupt or seek protection from its creditors by going
to Court for protection under Chapter 11. Herewith, seme facts:

In the fourth quarter of 1985, Commodore sold over one million computers. Its
revenues from those sales were $339.2 million— an all-time record in revenues
for Commodore for any quarter. Without writedowns for inventory and the clos
ing of plants, operating profits were $1.03 million.

Now, we hear from the rumor mill that for many a year, all those busted Plus 4s
and buggy C64s returned from the toy shops were stuffed into warehouses and
marked as "inventory". We won't point a finger at Kindly Uncle Jack Tramiel, or
at any of the folks vdio sold their stock when they departed Commodore a year or
so back. (Did the practice keep the price of the stock up for a while?)

Anyway, with the end of production on the 8032, the Vic, SuperPET, Plus 4, and a
bunch of printers and peripherals, Cornnodore wound up with excess plant and use
less inventory— which it is selling or writing off the books. (Have you seen the
television ads for this great computer, the Plus 4, run by whoever bought them?)

To restore order, Commodore's new managers in the last quarter of 1985 wrote off
a plant in England and a semiconductor plant in California for $22 million, plus
$29 million more for obsolete inventory.

Writedowns obscure true operating results— and set the stage for excellent earn
ings. Ihe figure to watch is cash flow— how many megabucks are coming in. Debt
you service with cashflow; writedowns don't cost you a cent, nor do they threat
en your creditors (the stockholders feel the pinch) . Commodore is doing fine on
cash flow; you can bet your socks that the the banks to which Commodore owes
money won11 push the canpany into bankruptcy so long as the golden tide flows
in. So much for the yapping bad-news hounds of the press (yup, that's a pun).

A week after writing this, we found a tiny squib in InfoWorld noting that Comm
odore has reached an agreement with its banks for a $135 million line of credit
which runs through March 15, 1987 (yes, 1987) . We did not subsequently see any
24-point headlines in TIME or in any of the other sheets vfaich had splattered
the bad news over their pages. Chalk up one more failed sortie by the wolves of
the media to hamstring and devour a firm that showed a trickle of blood.

ONCE OVER LIGHTLY An ISPUGger equipped with an 8023 printer went to enormous
Miscellany efforts to indent hard copy output. As he says, "If you do

not know how to tab your 8023 from the editor to make the
beast starting printing on a particular colunn, here is a way to slide text over
that I plagiarized from page 52 of the System Overview Manual" (see the monster

at left, where the number of spaces preceding the
/%./c/%~%.%%$/ %&/ '%&' determines how many spaces are inserted at the

start of a line). Gee, we almost awarded him a prize
for persistence and valor, but instead we broke down and wept, because it is so
very easy to do the same thing with the simple critter at the left, which merely

SuperPET Gazette, Vol. II, No. 10 -274- April/May 1986

says to change the start of every line (%~) to begin with
*c/%V / number of spaces between the two slashbars. Any text in an

editor is then indented by that number of spaces. If you are
careful not to edit further (any editing destroys invisible text past the screen
right margin) , text sent to printer will be complete and indented neatly. Ah,
well; the problem would not exist if he could tab his 8023 printer from an edit
or. Vfe don't have an 8023. Anybody know the commands? If we get 'on, we can send
'em fron BEDIT by hook or crook.

THE THREE-BOARD BUG IN OS9 We reported a few issues back that the upper 64K
of memory no longer died in OS9 when that opera

ting system was installed on sane old 3-board SPETs. Seems we wore wrong. Bob
Davis reported that his machine wouldn't run 0S9, though everything else worked
fine; then we got our OS9 board hooked up, and it wouldn't work either. All in
stallations of OS9 on two-board machines seem to be working fine; we've had nary
a trouble report.

The Decanber, 1985 issue of TPUG magazine carries a complete summary of the pro
blem and of the proposed solution. For those who do not receive the magazine, we
surrcnarize. The problem: the 3-board machines simply will not run OS9, although
the Waterloo languages and facilities run okay. The cause of the problen appears
to be a mistake by Commodore which causes the 64K of bank-switched RAM not to be
refreshed when you work permanently in those upper banks, as OS9 does. All dy
namic RAM loses its manory contents if not refreshed now and then.

TPUG reports that a hardware engineer hired to find a fix has indeed found one.
Two chips are needed, but are hard to come by. When they are in hand, TPUG will
construct and test a prototype. When we hear the results, we'll report.

AGING BUT NOT SENILE: We do appreciate the thoughtful folk who carefully re
move the address label from the backside of the application form and re-glue it
on the front when they renew. But, dammit, although we indeed are getting older,
we retain strength sufficient to turn an application over to read the label just
where the printer placed it...

THE NATIONAL NO-REPAIR CENTER: Our old Tandem drive began to shriek and moan
beyond its usual volume last fall, and then regurgitated error messages when it
tried to read any disk made on another drive. We shipped it off to the National
Repair Center, at 3354 Winbrook Drive, in Memphis Tennessee, 38116, as Commodore
recommended, on November 15, 1985. Vfe write this on March 15, 1986, four months
later— and National still has not repaired the poor old thing. Every time we
call, they say they need parts and expect them soon... Vfe finally said to hell
with it and told 'em to send the drive back. We suspect they will charge us for
rent... If you expect service, go somewhere else.

For those in the Gentral U.S.: Ervin Dunham of Natchez, Mississippi, reports
that Mid-Kansas Gomputers, at PO Box 506, Newton, Kansas 67114 did a nice job
of repairing his SuperPET and for a most reasonable charge. Call 316 283 0208.
But then again, you may not want to:

From Colin J. Campbell of Nova Scotia: "I phoned the firm that was selling $200
SuperPETS [Ed. Mid-Kansas, as above] the morning I received the last Gazette.
I confirmed that (a) SuperPETs were available at that price; (b) they indeed had
same in stock; (c) manuals were included; and (d) that they would ship one to me

SuperPET Gazette, Vol. II, No. 10 -275 April/May 1986

including shipping charges. Six weeks passed. My VISA account was not debited. I
phoned a second time and was informed that they could sell me a used model for
$400+ but in reality had none when I originally called...#$%!!...11

GOTCHA, ARNOLD! "Gadzooks, first you give me h_1 for not ordering the sche
matics soon enough, and now I find I must get another copy of BEDIT because I
bought the first version too soon!” cries Arnold Marks of Miami. Sorry Arnold,
but we learned how to hook folks on software a few years back. First, you give
'em a taste; when they are addicted after a year or so, you offer a purer stuff.
We reckon we could go on and on, through BEDIT 4, if Joe Bostic weren't all tied
up writing a decent editor for Amiga. And we're getting filthy rich at ten bucks
per disk...

ML SPEEDUP ON DELTON'S HOME ACCOUNTING: A few months back, Delton B. Richar
dson of 4299 Old Bridge Lane, Norcross, Georgia 30092 told us that he had most
considerably speeded up his Home Accounting software— which some of you may have
bought from him for $15 U.S. (you can order the improved version for the same
price directly from Delton. Don't write usl. All versions are for 8050 format
only) . He sent us a sample disk; supercharged it is! The slow stuff he redid in
machine language. He also arranged to load the ML routines automatically from
microBasic, so the user does not have to to fuss with it. When you use the pro
gram, you'd never know the ML routines were there, except for the speed. But—
therein lies a tale...

When we got Delton* s disk, we noticed a lot of PEEKery and POKEry going on as
Delton loaded the ML stuff; we learned by inquiry that the black magic simply
reset MsnEnd_ and recreated the pointers and data mBasic needs just below that
new ManEiTd_. So we asked Delton if he had re-invented the wheel, for we had pub
lished in Issue 13, Volume I, page 219, a simple method to do just that. Delton,
sobbing, reported that "I have in fact re-invented the wheel! This is a rather
caranon problem in software...". Indeed it is, and we blame ourselves for entit
ling the piece "To Kill a Mockingbird"; which, if highly literary and allusive
(we are addicted to both) , is hardly descriptive. Sorry, Delton. You can write
that week of work off to our fondness for cryptic and mysterious titles.

ANYONE FOR TENNIS? It takes about two days to create a cross-referenced in
dex to a Volune of the Gazette. Wte haven't had time to do it for Volune II, and
ask for a volunteer to create one. Every major subject must be entered under a
couple of logical index headings. Then you sort the list, edit and format it,
which is easy. Because we're working with two different computers on a 36-hour
day schedule, we don't have the time. If you want an index, make one! Write if
you can take the job on! Please give a hand!

MORE ON VI SI CALC: A few issues back, poor Marilyn Post asked where in the
world she could get a copy of Visicalc for SPET. Two kind souls replied to her,
making it available, but the remaining problem is instructions. John Frost of
Seattle writes that "The Visicalc Program Made Easy," by David M. Castlewitz, is
available from Osborne/McGraw-Hill, and certainly will serve.

ANOTHER SPET FOR SALE: Ken Druze of 1830 Fern wood Road, South Belmar, N.J.,
07719, offers a SPET, 4022 printer, SFD 1001 and 2031 drives, Visicalc, POWER,
all manuals, plus schematics and a 64K menory expansion used only with Visicalc.
For details: (201) 747 6745 weekdays, 10-6, or (201) 681 1353 at other hours.
The rig goes as a complete package. Original boxes available for shipment.

SuperPET Gazette, Vol. II, No. 10 -276- April/May 1986

MOSES DIDN'T... Charles Kiessling of Berkshire NY writes that "Your evalua
tions of Amiga are the only ones that are worth anything. Most reviews read as
if Moses carried it down the mountain with the commandments." Yeah, we noticed
that, too, and wondered if the other reviewers got a different model— or just
didn't do their homework. Well, it is a good machine, but it doth have flaws.

BUG IN BEDIT 2: As much as Bedit 2 was massaged before release, a l'il bug is
in it. Any attempt at a global change with the tilde used in the search string
won't work properly (the tilde here represents any non-alphabetic character).
Bedit simply ignores it. If a change command is given a line at a time, the til
de works okay. Joe Bostic is working on a fix.

TEMPLATES FOR THE KEYPAD: John Seither of 4242 Briars Rroad, Olney, MD 20832
has a new Hewlett-Packard 8-pen high-res plotter,

with which he creates templates for keypads or function keys (IBM, Compaq, SPET
or Televideo). Templates are in clear, flexible plastic; they fit around and id

entify the function of each key. While
we can remember the mEDIT keys in our
sleep on a black night in a hurricane,
many folks can't; we find the template
for NEWTERM keys very useful. We show
one of the overlays at left (for the
Editor) . Similar templates are avail
able for SPET's NEWTERM; for Symphony,
Lotus 1-2-3, Freelance and WordPerfect
on the IBM PC, Compaq, and Televideo.

The clear plastic templates are dura
ble; better than the paper ones often
furnished with programs. John wants
S2.50 each for the templates listed
above— minimum order $5.

If you want a custom template for any
of the machines (for programs which
aren't listed above), John will make
them for $5 each— but only if you send
him a rough but dimensioned drawing of
what you want, plus the text you want
on the template.

Vfe don't know how well the image of
the tenplate will reproduce, because
John used blue ink for the outline,
and blue doesn't reproduce too well—
sometimes. If the borders look sorta
amateurish— we redid them in black.

AN EASY WAY TO PASS PARAMETERS For the past year, we have tried and
BETWEEN LANGUAGE AND ML ROUTINES have abandoned some six different ways

("How Ccme So Previously Dumb?" Dept.) to pass parameters between high-level
languages and assembly language rou

tines. Vfe demanded that the method pass named variables from a HLL (high-level
language) and that parms caning back from the ML routines also became named var

I
SuperPet Editor

SCR MODE B
COM MODE 5

i---------------- n
LINE PET BEDFT
f ; NEWTERM

IBM SYMPHONY
INE . Etc. LOTUS 1—2—3

DOWN , FREELANCE
WORDPERFECT4

For programs not listed,
send $5.00 per template

: along with a rough but
\ demensloned drawing to
i Include desired template
! text

DEL LINE
INS LINE ? PA6E DOWN

0 (.)

SuperPET Gazette, Vol. II, No. 10 -277- April/May 1986

iables in the language. All methods we tried were slow, canplex, and specific to
a particular task. We kept looking for a method which would pass any number of
parms to ML routines and would return one or two from the ML routines as named
variables in the language. Last, we wanted to be able to pass error messages
from ML back to HLL. And we wanted to do all this with a standard routine which
would be universal, requiring no change from program to program.

When we finally figured out how to do it, we blushed— the method is so simple it
ought to have been invented about the time Cheops built his pyramid.

OUTLINE OF METHOD: The problem in passing parms always is their address. Now
that we know how, it seems obvious that the screen and the keyboard buffer are
the places to pass them, for addresses in both are easily defined. The screen
has one limitation, however: you can't pass unprintable parms unless you poke
them— a slow process. We therefore gave the keyboard buffer a try, and found we
could pass parms back and forth with ease. Here's the approach:

1. Pass language parms by printing them into the keyboard buffer. We set
the high and low pointers to the buffer to $130 (decimal 304) , the start of the
the buffer. We then print into the buffer the count of parms sent and the parms
themselves (up to 39 characters worth). Then we SYS our ML routine.

2. The ML routine starts with a parm-getter vtfiich looks in the keyboard buf
fer and stuffs the parms into buffers. Parms may be data or system addresses.

3. Once the parms are stored, the ML routine calls an "execute" module viiich
executes whatever code or system routine is wanted. As its last step, the "exe
cute" module stuffs the results back into one or more "result" buffers.

4. A "putparm" ML routine then stuffs the result buffers into the keyboard
buffer, each parm being ended with a CR. We now RTS back to language from ML.

5. The lines in language which follow the SYS call ask for input. In every
language we've used, every input statement always dumps the

sys hex ('7008') keyboard buffer to the next CR. Well, all returned parms
input "",return$ are stuffed in the buffer with a terminal CR. They dump at
input "",error$ "input" just as if we'd typed than in. We automatically

get named variables with values in HLL.

There are three ML routines: a parm getter which never changes; an "exe
cute" module which must be written by the user, and a parm putter Vihich never
changes. In mBASIC, we need only one short language module, ten lines long. It
passes any number of parms and likewise need not change. Of the four modules,
three are general-purpose and should work with any program.' The method should
work in any SuperPET high-level language.

In the programs below, we chose to pass all parms as strings, in both di
rections. When we pass parms from language to ML, integer or real variables
appear in the keyboard with prefixed and suffixed spaces; string variables do
not. When we pass parms from ML to language, we know strings will print and in
put okay in HLL. Consistency in data type avoids programming problons.

Last, a note on the pointers to the keyboard buffer; the first (at $012C)
points to the first character entered; the second (at $012E) points one byte

SuperPET Gazette, Vol. II, No. 10 -278 Apri1/May 1986

past the last character entered. If both pointers point to the same address, the
buffer is "empty.” If the pointers are apart, the low pointer moves up to the
high pointer, printing to screen all characters between the pointers at any in
put statement, PAUSE, or STOP. We adjust the pointers so that the buffer will
hold only parms, and nothing but parms, no matter viiat keys the careless or
idiotic may press on the keyboard v^ile the program runs (the keyboard is dis
abled within the passparm procedure itself). For more details on the keyboard
buffer, see Issue 1, Vol. II, p. 12ff and Vol. I, p. 122 and p. 219.

The mBASIC demo below generates parms to pass and gets back from the ML
routines the answer and any error message. Note that all parms received from
the ML module are "input" into the HLL as named language variables. Procedure
"putparm" will pass any number of parms, and need not be revised.

! marry:bd. mBASIC demo of parm passing. Adds two integer parms, returns
! result plus error message if total lies between 32768 and 65535.

100

110
120
130 nul$=chr$(0) : option base 1
140 real$(l)="1234"
150 real$(2)="5678"
160 open #20, "keyboard", output
170 call putparms(mat real$,2)
180 sys hex('7008')
190 input "", return$
200 input "", error$
210 print "Value of return$ is: "
220 print "Error message is: ";error$
230 stop
240
250 proc putparms(mat parm$,parm_count%)
260 poke hex('0129'),0
270 poke hex(,012dl),hex('30')
280 poke hex('012f') ,hex(1301)
290 print #20, value$ (parm_count%);
300 for i%=l to parm_count%
310 print #20, parm$(i%);nul$;
320 next i%
330 poke hex('0129') ,hex(' f f ')
340 endproc

dim real$ (5)
! Vary value of input strings to
! exceed 32767; error msg. returns.

! Put parms in keyboard buffer.
! Call ML routine.
! Sense result in keyboard buffer.

return$! Print language variables.

A general-purpose parm-passer.

Disable keyboard for dumbjohns.
Set low byte of buffer pointers
to start of keyboard buffer.
Pass parm count to ML Routine.

Pass strings, without leading or
trailing spaces, ended with null,
friable keyboard.

The ML program below is designed to load at main menu before mBASIC is loaded.
The "getparms" routine will handle any number of parms so long as a buffer is
allocated for each input parameter, within the buffer limit of 39 characters.

;passer.asm. A demonstration of parm passing between ML and language.

XREF stoi ,itos

kyptrl_ EQU $012C
kyptr2 EQU $012E

; Routines convert string to integer and
; integer to string.

LDD #getparms-2 ; This menu loader sets MenEftd , which is
STD $22
CLR $32
RTS

; at $22, and
; clears service for return to main menu.

SuperPET Gazette, Vol. II, No. 10 -279- April/May 1986

;"Getparms" gets the counted number of parms from the keyboard buffer and stores
;thorn. It then calls the ’’execute" routine to use the data, and finally calls
;"putparms" to pass the results back into the keyboard buffer.

getparms

thru

CLR result1
CLR result2
LDY #$130
LDX #buff1
LDA ,y+
SUBA #$30
PSHS a
CLRA
LOOP
LDB ,y+
IF EQ
STB ,x
DEC ,s
BEQ thru
TFR a,b
LSLB
W X # table
LDX b,x
INCA

ELSE
STB ,x+

ENDIF
ENDLOOP
LEAS l,s
JSR execute
JSR putparms
RTS

Zero out result buffers so routine can be
used as often as wanted.
Load pointer to first character in key. buffer,
Point to buffer for parm 1.
Load the parm count.
Convert it to a counting number.
Stack is used as decrement register.
"A" register is an offset index.

Get parm character.
At end of string yet?
YES, store end-string null.
Reduce stack parm count by one.
Quit; no more parms.
Compute the next buffer address by
multiplying parm count by 2
and offsetting to
load proper buffer address.

Store character in buffer.

; All parms stored.
; Now, call routine which uses the parms.
; Pass the results back to keyboard buffer.

;This routine is for demonstration only. It adds the two parms passed, stores
;the results in the result buffers, generates an error message if the result
;is wrong, and puts the error message in a result buffer. Substitute for this
;your own routine, passing all parms to the RESULT buffers as strings.

execute LDD #buff2
JSR stoi_
STD buff2
LDD #buffl
JSR stoi_
ADDD buff2
PSHS d
GUESS
QUIF cs
QUIF mi

ADMIT
LDX #result2
LDY #errmsg
LOOP
LDB ,y+
STB ,x+

UNTIL EQ

PI address of second number parm.
Convert it to a counting number in D.
And store the result.
PI the first parm string.
Convert to a counting nunber in D
Add the second parni. Result is in D.
P2 the two-byte integer sum for later use,

If carry or negative flags are set,
ws have a wrong answer, so

send an error message back to language

in the second result buffer.

SuperPET Gazette, Vol. II, No. 10 -280- April/May 1986

ENDGUESS
LDD #resultl
JSR itOS_
LEAS 2,S
RTS

PI the address of result buffer, convert
sun to a string value in result buffer.
ITOS ends the string with a null.

;This routine returns the results to the keyboard buffer. It sends a plain CR
;for a null parm (which enters language as a null string), or it sends back
;a real parm if there is one. Vfe have limited this routine to 2 parameters.

putparms

fini

LDX #$130
PSHS x
LDY #resultl
LDA #2
LOOP
LDB ,y+
IF EQ
LD3 #$0d
STB ,X+
DECA
BEQ fini
LDY #result2

ELSE
ST3 ,x+

ENDIF
ENDLOOP
PULS y
STY kyptrl_
STX kyptr2_
RTS

; Point to start of keyboard buffer.

; Get address of first parm.
; We assume no more than two result parms.

Get one character of result.
If null, we are at end of parm.
End parm with a CR
in keyboard buffer.
Decrement the parm count
until we've passed 'em all.
Now pass parm 2. If null, a CR only is sent.

Stuff parm character in keyboard buffer.

; Get address of start of keuboard buffer.
; Set low pointer to start of keyboard buffer.
; Set high pointer one past last character,
; so buffer will dump on an "input."

errmsg FCC "Error. Sum too big"
FCB 0

table FDB buff2,buff3,buff4,buff5

The passer.and file follows:
"passer .and"
org $7000
include "disk/1.watlib.exp"
"passer.b09"

buffi
buff2
buff3
buff 4
buff5

RMB 16
RMB 16
RMB 16
RMB 16
RMB 16

There is no limit on the number of input
parms except memory used for buffers and the
39-character limit of the keyboard buffer.
Resize these buffers as required.

resultl RMB 16

result2 RMB 23

; Result buffers may be resized as needed to a limit
; of 39 characters.

Although we could have used one or two consolidated buffers and saved sane mem
ory, the code gets more complex and certainly is harder to follow. We opted to
keep it simple. And yes, you could stuff the results of "execute" directly into
the keyboard buffer without intermediate buffers; the penalty is rewriting the
buffer-stuffer code for every package. We'd rather not, thanks all the same.

SuperPET Gazette, Vol. II, No. 10 -281- April/May 1986

BETTER WAYS OUT OF THE BLUEBERRY BUSHES Last issue, ws showed several ways
And Back Heme to Mother to exit from a procedure or func

tion, back to the calling program,
before the procedure itself is completed. As usual, no sooner was it published
than we received a program from Dr. John Oordes (of 50 decimal digits of accur
acy in floating point fame) which shows several previously undocumented, most
ingenious and useful ways to do the same thing— all of them simple and sweet.

endproc :bd, by John Oordes100
110
120 x = 3.1
130 print tab (7); "
140
150 for i = 1 to 10

x = x - 0.2
call end_procl
call end_proc2
call end_proc3
print tab (5);

i

tab (20);

160
170
180
190
200 x; tab (18);z
210 next
220
230 proc end procl

The first way to leave a procedure at any
time is shown on line 250. There, you may
exit upon any condition you may state. Vfe
should have known this was possible, for
we carried an article on similar exits in
a FOR...NEXT loop a few issues ago.

Line 330 shows the same method of exit in
an IF...ENDIF. Both Dr. Gordes and ye ed
ran this program for 1000 iterations to
be sure that these "prenature" exits were
accepted and did not muck up the stack.
No problens.

250 if z < 2 then print "A"; : endproc think is a GOTO a label, but really
260 print "B"; isn't. It is simply another way to
270 z = x**2 mark the end of a procedure.
280 endproc
290 X z
300 proc end proc2 BCD 2.9 8.41
310 z = X BCD 2.7 7.29
320 if z < 2 BCD 2.5 6.25
330 print "a"; : endproc BCD 2.3 5.29
340 print "Ooopsi"; BCD 2.1 4.41
350 end if Aa 1.9 1.9
360 print "C"; Aa 1.7 1.7
370 z = x**2 Aa 1.5 1.5
380 end proc Aa 1.3 1.3
390 Aa 1.1 1.1
400 proc end proc3
410 z = X Printed above is program output for
420 if z < 2 then endproc ten iterations,, which certainly shows
430 print "D"; that each EXIT works as intended. We
440 z = x**2 suspect the methods above will work
450 endproc without change in -functions.

T H E & P I L E X P f f i f f l S S toy ffiHEG IffiCI
Box 16, Glen Drive, Fbx Mountain, RR#2, Williams Lake, B.C., Canada V2G 2P2

We thought we had licked the problem of direct access files in APL without any
need for handling the access mode and status bytes in the file control block
(FCB) [see the last issue of the Gazette for details] . Using the syntax in Stan
Brockman's Assembly Language program, simple APL functions to read and write
sectors were written using Ul, U2 and B-P. These functions worked— but after a
couple of sessions at the computer proved unreliable. The READ function some-

SuperPET Gazette, Vol. II, No. 10 -282- April/May 1986

times failed and returned nothing after supposedly reading a sector. It proved
necessary, after all, to clear the EOF bit in the status byte of the FCB and to
clear the 3rd and 4th bits of the access mode byte. In order to do this, it was
necessary to PEEK these bytes, mask them, and then poke them back into the FCB.
The following functions were written for this purpose. Direct definition was
used for the result-returning functions.

DISPLAY 'PEEK'
PEEK: + / (-UIO) +UAVxUPEEK oj

vpoke tmv
[0] A POKE B
[1] UAVWO+A'] QPOKE B

VFCflCDHV
[0] R + FCB ;FPTR;X
[1] FPZ7?<-3+16x7

[2] X-*-l+(25S*PEEK(FPTR))+PEEK(FPTR+l)
[3] R-{2S&xPEEKUC+*))+PBEK(X+S)

DISPLAY 'AND'
MZ?:2l((8p2)Tot)A(8p2)Tw

VRESETlUlV
[0] RESET FCB2;VARl;VAR2
[1] VAR2+PEEK(FCB2+12)
[2] (VAR2 AND 254) POKE FCB2+12
[3] V AR1*-PEEK(FCB2+1)
C 4] (VAR1 AND 231) POKE FCB2+1

ftRETURNS AN INTEGER.

f\A IS THE CODE, B IS THE
a..ADDRESS IN DECIMAL.

^RETURNS THE ADDRESS OF THE
nSECOND PART OF THE FCB.

A'ANDS' TWO DECIMAL NUMBERS
a..BETWEEN 0 AND 255.

PRESETS APPROPRIATE BITS IN
n..THE FCB.

Note the use of plus reduction in PEEK. This was necessary because, contrary to
the information in the Waterloo microAPL manual about PEEKing a single byte, the
result is not an integer but is instead a single element vector. This should be
expected since the syntax for QUAD PEEK permits a vector argument of memory lo
cations and returns a vector result. The result of peeking monory locations is
converted to decimal form by looking it up in QUAD AV. The function AND converts
these and the masks to binary numbers and "ands" them, then changes the result
back to decimal form. RESET then uses these to adjust the KB, not properly han
dled by Waterloo's DOS/ROMs. With these additions, READ and WRITE have proven
reliable during several further tests.

m\4Z?[[]]V
0] Z READ A \FCB2
1] 'IEEEZ+1S.\0' QTIE 15 ftINITIALIZE DRIVE 0.
2] WNTIE 15
3] 'IEEES+2.<' HTIE 2 ^REQUEST DISK BUFFER.
4] FCB2+FCB piFIND ADDRESS OF FCB.
5] ('IEEE8+15.+1 2 0 1,*A) \JPREATE 15 nSEND U1 COMMAND.
6] RESET FCB2 ftRESET FCB.
7] l-^GET 2 256 nREAD 256 BYTES.
8] DUNTIE HUMS
9] 'IEEE8+15.i0' UTIE 15 nTURN OFF DRIVE LIGHT
10] DUNTIE 15

VWRITEZUlV
0] A WRITE TEXT
1] 'IEEES+15.i0* HTIE 15
2] HUNTIE 15
3] 'IEEE8+2.<' VP REATE 2 AALLOCATE BUFFER.

SuperPET Gazette, Vol. II, No. 10 -283- Apri1/May 1986

[4] »I£££8+ 15.1+ * 2 0* VC RE ATE 15 fiPOINT AT 0 BUFFER POSITION.c 5] (255iTEXT) □PUT 2 fiSEND TEXT TO BUFFER.c 6] ('IEEE8+15.12 2 0 ' ,WA) UCREATE 1 fiSEND U2 COMMAND.
[7] DUNTIE BNUMS
[8] 'IEEE8+1S.i0* UTIE 15 PiTURN OFF DRIVE LIGHT.
[9] UUNTIE 15

The correct syntax for these functions is, for example; READ 18 1 to read track
18 sector 1 and 6 3 WRITE 'NOW IS THE TIME, ETC.', which writes the text to
track 6, sector 3. You might have noticed that WRITE writes 255 bytes and READ
reads 256. WRITE sends 255 bytes followed by a carriage return. All 256 bytes
may be successfully READ but if an attempt is made to WRITE 256 bytes, one byte
is lost. The system writes in the carriage return as the 256th byte. Attempts to
suppress the carriage return and let 256 bytes be written have so far failed.

Seme machine language routines executed using QUAD SYS might come in handy for
direct access filing or other purposes. Vfe first examine the form of QUAD SYS.

A QSYS C r\C IS EITHER A MEMORY LOCATION EXPRESSED AS A DECIMAL
INTEGER BETWEEN 0 AND 65535 OR A CHARACTER VECTOR OF BYTES TO EXECUTE DIRECTLY.
A IS AN OPTIONAL PARAMETER LIST TO PASS TO THE MACHINE LANGUAGE ROUTINE. THE
TWO-BYTE VALUE OF THE FIRST PARAMETER IS PASSED TO THE 6809 D REGISTER. THE
REMAINDER ARE PUSHED ON THE STACK (2 STACK BYTES FOR EACH PARAMETER). A RESULT
IS RETURNED FOR EACH QSYS AND REPRESENTS THE VALUE IN THE D REGISTER AT THE
TIME OF RETURNING FROM THE MACHINE LANGUAGE ROUTINE. EXAMPLES FOLLOW:

QSYS 55721 *55721 IS THE LOCATION OF A ROUTINE WHICH CLEARS THE
n..SCREEN. A RESULT OF 160 WAS RETURNED.

A+USYS 55721 r\THE RESULT IS RETURNED IN A AND NOT PRINTED TO SCREEN.

Before we can directly execute a machine language program we must first obtain
a listing of it in decimal, which we convert to characters using QUAD AV. As a
simple example to illustrate the method we will use the one found on page 17 of
the Waterloo 6809 Assembler manual (we replace the SWI command with the RTS com
mand required by APL, and write in the address of PUTCHAR_):

Hexadecimal ML code Decimal Code Description
C6 61 192 97 Load B register with "a"
BD BO BD 189 176 189 Jump to "PUTCHAR_" subroutine
39 57 RTS (return frcm subroutine)

The routine "PUTCHAR_" (for those not up on Assembly language) is a machine lan
guage routine residing in ROM in SPET's memory which will print one character to
the screen. The ROM address in Hexadecimal is BOBD. To use this routine, the
character to be printed is loaded into the D register (really into B, which is
the lower half of D) . The routine then picks the character out of the register
and prints it to the screen.

R+USYS QW[DT0+198 97 189 176 189 57]

A
THE WHOLE PROGRAM IS WRITTEN IN 'MACHINE LANGUAGE* AND EXECUTED DIRECTLY.
ANOTHER METHOD WOULD BE TO PASS THE LETTER M* AS A PARAMETER DIRECLTY INTO
THE D REGISTER (WHICH ACTUALLY PUTS IT INTO THE B REGISTER) AND THEN DIRECTLY
EXECUTE THE REST OF THE PROGRAM.
i?«-97 QSYS Q47[[]r0+189 176 189 57]

SuperPET Gazette, Vol. II, No. 10 -284- Apri1/May 1986

57 IS THE RTS CODE WHICH MUST END EACH MACHINE LANGUAGE PROGRAM.
OF COURSE, SINCE WE KNOW THE ADDRESS OF 'PUTCHAR_' ,45245, WE CAN USE THE OTHER
FORM OF QS7S.
M 7 BSYS 45245
.4

Because QUAD SYS is result-returning we can define a function SYS in direct de
finition. We will also need a function to convert Hexadecimal to decimal, as the
program listings and memory locations we can find are in hex.

DISPLAY 'SYS1
3YS:USYS UAVlUlO+ul pNO OPTIONAL PARAMETER LIST.

DISPLAY 'HTOD'
HTOD:161-UIO-*012345678 9ABCDEF'i

pHEX ADDRESS CONVERTED TO DECIMAL ADDRESS.

mCONVERSION OF ADDRESS TO HIGH-BYTE, LOW-
p..BYTE FORM.

4

HTOD 'BOBD'
45245

HTOD 'BO'
176

HTOD 'BD'
189

HTOD 'C6'
198

^CONVERSION OF JSR OP CODE.

R+SYS 193 97 189 176 189 57

Now, on to the greater task. We can directly execute PIC (position independent
code) using QUAD SYS, or the function SYS, previously defined. [Ed. Three great
cheersI Someone has now recognized the fantastic advantages of PIC .in APL, where
you cannot lower the top of memory for an ML package without making all APL wor
kspaces incompatible! Great work, Reg! You've burned off the slave chains!] Now,
write a program in Assembly Language using the DEVELOPMENT package (or type one
in from an example given in a previous issue of the Gazette, as we did here) .
Assemble it and load in the .B09 file using the APL function CONV_B09, which
follows. The interested reader should read the background material on this which
appeared in Vol. II, No. 2, pp 38-47. We assembled the PIC program example in
the reference, creating a file, MLDUMP.B09. The program CONV_B09 takes the .B09
file and gets the object code out of it and converts it to decimal code.

VCONV £09[[]]V
[0] R <- C0NV B09 FILE ;□10; I
c 1] (FILE,'.BOS') UTIE Q T ^ l

[2] R*- □GET 1 2000

c 3] WNTIE 1

[4] I+~l*(R='T')/\pR
[5] /M l+ iH t f

[6] iMQ4y[QT0+13]*/?)//?

[7] iM ((p i ? H 2) . 2) p t f

[8] i^-161-QTO-' 0123456789ABCDEF'\§R

pTIE THE .B09 FILE TO THE WORKSPACE.
pGET ENOUGH CHARACTERS (MAY NEED TO
p..INCREASE IF VERY LARGE FILE).
pFIND THE INDEX OF 'T'.
pTAKE THE OBJECT CODE FROM .5 09 .

pCOMPRESS OUT ALL CARRIAGE RETURNS.
pMAKE A 2 COLUMN ARRAY OF HEX BYTES,
pCONVERT THEM TO A DECIMAL VECTOR.

R<-SYS C0NV_B09 'MLDUMP' pUSING THE FUNCTION 'SYS' EARLIER DEFINED.

The .B09 file holds same English instructions; the object code in hex follows.
Just before the hex code the title "OBJECT" appears, followed by a carriage re-

SuperPET Gazette, Vol. II, No. 10 -285- April/May 1986

turn. Because OBJECT ends in a "T", we can use an APL idiom which locates the
index (position) of the last appearance of any character in a vector to find the
index of the last T. Line 4 in CONV_B09 does this. Line 5 gets us the object
code by taking the characters following the carriage return after this T. The
object code is broken up here and there with carriage returns. Line 6 gets rid
of these carriage returns, and we now have a vector of hex characters. Vfe take
these in pairs and form a two-column matrix of the pairs (line 7) . Finally they
are converted to decimal code by line 8. We could have broken this program up
into parts and written it using the direct function definition compiler, but the
first part of it can't be written this way since it is not result-returning; we
wrote it all as one function, using the del editor. Executing the final program
given in the above example resulted in a screen dump to printer, as expected.

We have successfully loaded in large .B09 files using this method. There doesn't
seen to be any limit to the number of bytes which can be "GOT", except for work
space size. Large files, however, are prone to workspace-full limitations vdien
you run O0NV_B09. If this happens, try bringing the .B09 file in, assigning it
to a variable, and converting it by hand using the steps in CONV_B09. Eliminate
any unnecessary objects in the workspace at each step to maximize space avail
able. We have successfully converted a 2400-byte .B09 file this way.

The beauty of this method of executing machine language programs in APL is that
it's not necessary to restrict the APL workspace to create a safe place to store
the machine language. If the "ceiling" (or end of user memory of the APL work
space) is reduced below $7FFF, other workspaces will be inccmpatable and you can
not)LOAD them. Functions may be copied in with)COPY or)PCOPY, but this is a
slow process. After converting a .B09 file with CONVJ309, the resulting vector
of decimal code may be kept as a global variable in the workspace or in a seq-
ential file on disk and loaded in when needed. The program is easy to edit in
APL by modifying the decimal code, which is another advantage.

The reader is encouraged to load in a .B09 file within APL by using lines 0
through 3 of CONV_B09. Take a look at it and see where the word "OBJECT" (with
the APL character for "capital" 0) appears. The method used for extracting the
object code will then be more easily understood.

QUAD POKE and PEEK are slow in APL. We wrote machine language routines to find
the address of the PCB and RESET the buffers. First, we redefined SYS to allow
an optional parameter list as a left argument. If the optional list is not re
quired a discard parameter can be supplied. If SYS were not redefined this way,
it would be necessary to define two forms of SYS. We assembled a slightly modi
fied form of reset (the subroutine of Stan Brockman's Assembly Language program
in the article on direct access printed in the last issue of the Gazette) to
make use of FCB2, passed as a parameter. The -.asm files for RESET and for FCB
are:

;reset routine
TFR d,x
LDX 4,x
LDB 12,x
ANDB #$fe
SIB 12,x
LDB l,x
ANDB #$e7

;Transfer fcb2 from D to X. fcb2 is passed into the
;..routine as a parameter by QUAD SYS in APL.

;The remainder of the routine is the same as
;..Stan's subroutine.

SuperPET Gazette, Vol. II, No. 10 -286- April/May 1986

STB l,x
RTS

;fcb routine
LDD $0073 ;The address of FCB (-1) is found in hex address $73.
ADDD #1 ;Finds the address of FOB and puts it in the D register
RTS ;..where it will be passed into APL by QUAD SYS.

Once these are assenbled and the .B09 files formed we go to APL and use CONV_B09
to get the decimal machine language for SYS. Vie enter this directly into READ.

DISPLAY *SYS1
SYS:a USYS UAVlUlO+u] PREDEFINED TO ALLOW OPTIONAL PARAMETER LIST (a).

PREDEFINE THE FOLLOWING LINES IN »READ' FOR MACHINE LANGUAGE FCB
pAND RESET.

[0] Z READ A ;FCB2 ;M
[4] FCB2*-1 SYS 220 115 195 0 1 57 pOPT. PARM IS THROWN AWAY.
[5] M+FCB2 SYS 31 1 174 4 230 12 196 254 231 12 230 1 196 231 231 1 57

The example above shows the modified lines in READ. Using this form of READ, we
were able to read in a sector in about two seconds. Using the other form, from
six to seven seconds were required.

DIRECT DISK ACCESS IN 6809 In Part I (last issue) we examined the structure
by Reg Beck of File Control Blocks (PCBs) and discussed what
Part II had to be done to overcome deficiencies in the

Waterloo DOS/ROMS when you use Ul, U2 and B-P in
direct access. An mBASIC example showed how to use the buffer pointer (B-P). Now
we'll examine an assembly language routine provided by Stan Brockman which looks
at the first file in the disk directory; if it is a scratched file, it restores
(unscratches) it as a SEQ file and then renames it to "DUMMY FILE". In the pro
cess, it demonstrates how to get data from the disk with the Ul and B-P commands
and then write data back to the disk with the U2 command. To quote Stan, "There
are much better ways to rename a file, but this shows all the ways of getting
the data off the disk— and back." The parts of the routine are numbered for con
venience when we later discuss each part.

;rename— Direct access example. Demonstrates the way to get the Ul, U2 and B-P
19 Dec 1985 commands to work. For 4040 drive. To modify for an 8050,
Stan Brockman change the number 18 in ul and u2 (at end of program) to 39.

include<call.macro>
openf EQU $b0ae
closef EQU $b0bl
initstd EQU $b0ab
mount EQU $b0e7
fprintf EQU $b0c9
fgetchar EQU $b0d8
fputchar EQU $b0cf
els EQU $d9a9 ;Rom routine to clear the screen,

Super PET Gazette, Vol. II, No. 10 -287- April/May 1986

; part 1
JSR initstd
JSR els Clear the screen.
CALL mount ,#disk0 ;Initialize drive 0.
LDU #$8000
LEAU -256,u Set up a buffer area into which the disk
TFR u,d ..buffer will be copied.
STD tmp buf Save the buffer address.
CALL openf_,#chl5,#UU Open command channel
STD fcbl5 ..and save the address of the ECB.
CALL openf ,#ch2,#UU Open channel to disk buffer (req'd by
STD fcb2 ..U1/U2) and save ECB address.
LBSR reset Clear bits 3 & 4 of access byte and bit 0

;..of status byte in channel 2FCB, just in case.
; part 2
;* * * Send Ul command to disk to read track 18, sector 1 of drive 0. * * *
9

CALL fprintf_,fcbl5,#ul ;This sends the Ul command but nothing
CALL fgetchar_,fcb2 ;..will actually get read until a char

;..is gotten from the buffer.
; part 3
;* * * Set buffer pointer and read the ^iole sector from buffer into SPET. * * *

CALL fprintf ,fcbl5,#b p ;Set buffer pointer to position 0.
CLR —lfU ;Set up an iteration counter,
LDY tmp buf ;..load addr of SPET buffer into Y,
LOOP ;..and loop ’til whole block is read.

CALL fgetchar ,fcb2 ;Get a char,
STB ,y+ ;..and store it.
DEC —1,U ;Decrement counter

UNTIL EQ ;..until it is 0 again.
LBSR reset ;Reset the channel 2 FCB flags again.

>f part 3
Set up first directory entry with new name. * * *

LDX tmp buf
LI® #$81
TST 2,x ;Test the file-type byte.
IF EQ ;If it is null,

STB 2,x ;..store code for SEQ file there.
END IF
LEAX 5,x ;Now point at the first name (if any)
LDY #nu nsm ;..and load address of the new name.
LOOP ;Transfer new name to the first directory entry.

LDB ,y+
QUIF EQ ;Exit loop if end of NU NAM has been found.
STB ,x+

ENDLOOP
LDB #$a0 ;Load B with shifted space character.
LOOP

CMPB ,x ;Pad rest of name with #A0, as necessary.
QUIF EQ ;Quit if entry already has $A0 in curr. pos.
STB ,x+ ;This loop can bomb if previous filename was

ENDLOOP ; ..16 characters long.

SuperPET Gazette, Vol. II, No. 10 -288- Apri 1/May 1986

* * * Now send it all back to the buffer again, then write it to disk. * * *
part 4

CALL fprintf ,fcbl5,#b p ;First reset the buffer pointer.
CLR
LDY
LOOP

; part 5

—1,u ;Initialize the counter
tmp_buf ;..and put the buffer address into Y.

LDB ,y+
PSHS d
CALL f putchar_, f cb2
LEAS 2,s
DEC —1,u

UNTIL EQ
CALL fprintf ,fcb!5,#u2 ;Send the U2 canmand.
PSHS d
CALL fputchar__,fcb2
LEAS 2,S

part 6
* * * Finally, close files and quit. * * *

CALL closef_,fcb2
CALL closef ,fcbl5

Push whatever character is in D
. .and send it to the buffer to force the
..buffer to be written to disk.

CALL
CLR
RTS

mount ,#disk0 ;Shuts the drive light off.
$32

/
reset EQU * ;This subroutine clears the EOF bit of the status

LDX fcb2 ;..flag in the second part of the input buffer FCB
LDX 4,x ;..so that any subsequent read will be successful.
LDB 12,x
ANDB #$fe
STB 12,x
LDB 1/X
ANDB #$e7 ;Clear bits 3 and 4 of the Access Mode byte.
STB l,x
RTS

/
tmp buf RMB 2
ch2 FCC "ieee8-2.#" ;The "#" says "reserve me a buffer" and attach

FCB 0 ;..it to channel 2.
chl5 FCC ndisk8-15/0fl

FCB 0
diskO FCC "disk/0" ;Used in initializing drive 0.

FCB 0
UU FCB *u,0
fcb2 RMB 2
fcbl5 RMB 2
b_P FCC "B-P 2 0%n" ;Will set buffer pointer to position 0.

FCB 0
ul FCC "Ul 2 0 18 l%n" ;To read track 18, sector 1, of drive 0

FCB 0 ;..into buffer attached to channel 2.
u2 FCC "U2 2 0 18 l%n" ;Same as ul, but write.

FCB 0

SuperPET Gazette, Vol. II, No. 10 -289- April/May 1986

nu nam FCC
FCB
END

"DUMMY NAME"
0

The file "call .macro" which follows is saved as a separate file on the disk. It
first appeared in the Gazette Vol. I No. 2, p. 158 in an article by John Toebes,
and is given here for those readers who do not have that issue. The macro passes
parms to routines in D register and on the stack and adjusts the stack automat
ically. The ccrrments on the call macro are omitted. All comments must be deleted
from this macro; the name "call macr" must begin at the left margin.

call macr
pcount_ set 0
ifnc .,\1.
ifnc .,\2.

pcount_ set 2
ifnc . ,\3.

pcount_ set 4
ifnc .,\4.

pcount_ set 6
ifnc .,\5.

pcount_ set 8
ifnc .,\6.

pcount_ set 10
ifnc .,\7<
fail

endc
ldd \6
pshs d

endc
ldd \5
pshs d

endc
ldd \4
pshs d

endc
ldd \3
pshs d

endc
ldd \2
pshs d

endc
ldd \1

endc
jsr \0
ifne pcount_
leas pcount_fs

endc
endm

vent a subsequent write (but

The following comments on the nunbered sections
of the program above come from Stan Brockman:

"1) Opening the files is fairly straightforward.
Terry Peterson observed, though, that the FCB
(file control block) of a file opened to file
"DISK..." will be properly initialized but
that because of a bug in the Waterloo IEEE
IEEE routines, the ECB of a file opened as
"IEEE..." will not be. Therefore, I do a re
set of the disk buffer ECB (channel 2 in my
program) after I open it. The drive actually
accessed will be the one last accessed, so I
avoid suprises by using the MOUNT command to
initialize the drive I intend to use, prior
to actually opening the channels.

2) Read a block of data with Ul: Study the
string constant, "ul" at the bottom of the
program. The parameters must be separated
by spaces. The key is to make sure that the
string is terminated by a CR when it is sent
to the disk on channel 15. Won't work other
wise. No action will take place until a
character is "got" from the buffer (never
mind that the disk hasn't yet done the read
you just asked for) . There have been times
when the character gotten isn't the first one
in the block being read, so I throw it away
and go on to the next step.

3) Set the buffer pointer to position 0 with
B-P. "b_p" parameters are also separated by
spaces and • terminated with a CR. If the en
tire block is transferred to SPET memory, as
in the deno program, the EOF bit in the FCB
will be set and will need to be cleared be
fore any other read or write operation to the
channel. Further, the read will set bit 3 of
the Access Mode byte of the FCB and will pre-

not another read).

4) Set the pointer again prior to sending data back to the buffer. I think this
step may be unnecessary if you read in the entire block in the first place, be
cause I understand the pointer wraps around.

SuperPET Gazette, Vol. II, No. 10 -290- Apri1/May 1986

5) Send the U2 command, with space separations and a CR. Force the write action
by putting more data into the buffer.

6) Button up the channels, shut off the drive light by MOUNTing the drive again.
Regarding steps 2 and 5, I've used unsophisticated methods because I'm simply
reading/writing a desk sector at a time. A database application would probably
want to take advantage of the smart DOS to effect record-spanning between disk
sectors, etc."

We think there should be enough information here (and in part 1) to permit mas
tery of the direct access filing techniques in Assembly language, mBASIC and in
APL (we hope) . Stan is at present hard at work on a DISK DOCTOR program. Any
corrections and/or additions to this information would be very welcome.

[Ed. note: Vfe began this series in Vol. II, No. 7, p. 197, but couldn't continue
it for several issues because of the space occupied by reviews of Amiga.]

TABLE LOOKUP, SEARCHES, HASHING In issue 7, we showed two swift ways to find
and ORGANIZING DATA any entry within sorted lists of names and
Part II - Hashing numbers— which work well if you have time to

sort the lists. But sometimes you don't have
time. Suppose you're taking orders by phone. How do you sort the list of today's
customers and add it to yesterday's? How do you respond to a second phone call
changing the order? Or assume you're entering the names and scores at a track
and field meet and don't know until the events begin who'll compete or in what
events. Somehow, you must take data as it arrives, store it, and then retrieve
any entry very quickly.

Hashing is just such a technique, quite simple in concept and just as simple to
implement, once you learn where the problems lie. It is also fast and powerful.

We show the three fundamental steps at left. In a
1. Generate an index from sense, hashing is a different way to sort, which is

the datum itself. independent of all other entries.

2. Use the index to put Once an iten is stored, you may recover it by using
the iten in a table, the same algorithm vfoich amplaced it. For example,
unless another entry we might write a program vhich assigns the first
already is in the position in a matrix to any entry beginning with
table at that place. the letter 'a', and the 26th place to an item which

begins with a ' z'. To retrieve the item, you enter
3. If so, find another the word, parse it for the first letter, and look

place in the table. at that position in the array.

The problem with this approach is immediately evident: where-do we put the sec
ond entry which begins with "a"? We confront the problem of entry collisions,
which is inherent in all hashing approaches. There are an enormous number of
different ways to deal with collisions and to quickly find a happy home for any
entry despite collisions. We'll later cover sane of them.

It is entirely possible to generate from any unique entry, such as "Joshua Sued
Bruner," a hashed index which you might think would be as unique as the name
(manipulate the values of every letter in the name, for example) . You may at
first guess that this is the way to avoid collisions. It isn't. The number of
possible entries (and the number of possible indices into a table) is infinite.

SuperPET Gazette, Vol. II, No. 10 -291- April/May 1986

No computer we know about can store a matrix of infinite dimensions. Suppose a
hashing algorithm can generate 15,000,000 unique indices, and you can store only
1500 entries; any unique key must be converted to one of 1500 not-so-unique in
dex numbers— and you'll still have collisions. The art of hashing is in large
part the art of compensating cleverly for collisions when they do occur.

The more densely a matrix is packed with entries, the oftener entries collide.
The term "loading factor" is the ratio of items stuffed in a table to the capa
city of the table. If a matrix with a capacity of 500 items holds 250 entries,
the loading factor is 250:500, or .5. Vfe can also state it as a "packing" or
"loading" of 50%. When you hash, you are well advised not to exceed a 60 per
cent loading if you want speed. Size your tables with this in mind.

Let us now look more closely at a simple hashing algorithm for use with char
acter entries, and at ways of compensating for collisions. For simplicity, we
use a starting base of 1 (all matrices begin with element 1, not 0).

* * *

A Simple Algorithm to Generate a Hashing Key
sum = ASCII ordinal of character 1 * 4 + ordinal (next-to-last character)
key = mod(sum, size_of_matrix) + 1

["key" is the index or subscript into a table or matrix]

In the algorithm above, "ASCII ordinal" means the ASCII code nunber for a char
acter. "Sum" is an intermediate variable which weights the first character of an
entry by four, and adds the ordinal of the next-to-last character to distinguish
an entry from others with the same first letter. The index into the matrix it
self is "key", which is formed modulo the size of the matrix. As an example, we
use the word "star". The ASCII ordinal of "s" is 115; we get 460 when we multi
ply by 4. When we add 97— the ordinal of "a"— we get a final sum of 557. Our key
into a small matrix of 52 elements then is: mod(557,52), or what's left over
when we divide 557 by 52. The answer is 37— plus one (we have no matrix element
zero) . We therefore place the word "star" in matrix element 38. Two aspects of
the algorithm deserve further explanation:

1. Why do we use modulo arithmetic? The ASCII ordinals of the alphabet range
from 65 to 122. Vfe can't use then directly, for there is no way to fill elements
1 through 64 of any matrix. Second, if we subtract 64, so that "A" bee ones 1, we
find that most-used characters ("s", "e", etc.) will form large clunps, while
rare characters ("z", "x", etc.) have an equal amount of space reserved within
the matrix but very few entries. We must distribute all entries as evenly as we
can throughout the matrix. Vfe do this by making "sum" so large that the modulus
of it bears little if any relation to normal ASCII character values. Third, in
the ASCII character set, we find six non-alpHabetic characters between "Z" and
"a"— and w= certainly don't want to waste matrix space for than. Modulo arith
metic solves all these problems very easily.

2. Why do we multiply the ordinal of the first character by 4? First, to get
a large value for "sum", and second, to avoid an indiscriminate median value for
entries. The sum of the ASCII ordinals for "F" and "o", for example, is 70 + 111
or 181, but so is the value of "E" and "p". Simple addition always clusters val
ues in a snail part of a matrix. Whatever multiplier is used to make "sum" large
must vary with circumstance. The multiplier of 4 is much too small for a matrix
of 5200 elements, because the largest "sun" we'd ever generate would occur from

SuperPET Gazette, Vol. II, No. 10 -292- April/May 1986

two "z's", and would total only 610. Matrix elanents 611 through 5200 we could
never fill. You must adjust the multiplier for the job.

NOw that we have an algorithm, let's explore collisions as we try to hash simi
lar words into a matrix.

English is full of words and names in which the 1st, 2nd...nth characters are
identical (as are the first six characters of the "bright" series, at left) .

How do you ever hash such words quickly with mini-
abstain,abstainer,abstains mal collisions? There are many approaches; we'll
bright,brighter,brightest discuss sane variations.

The first approach is to generate a unique index for each word (we previously
showed why that fails) . The second is to avoid collisions by using the last
character in a word in combination with the first. Unfortunately, that is bad; a
few characters (t, s, g, y, r, e, etc.) seen to predominate at the end of sim
ilar words and names. We had more success when we used the next-to-last or next-
to-next-to-last with the first. Fourth, if you try to employ a large number of
characters in combination, you slow the algorithm down too much; it’s faster to
compensate for collisions than to avoid them. We illustrate the problons below:

We made up a list of similar words with an unholy predominance of "b's" and used
the hashing algorithm above on it. Vfe show the values frcm the algorithm at left
and print a anall part of the list to show what happens. Note the values shown

Ord*4 Last-1 Sum Key Word
for the index, or "key" on those
words vrtiich are much alike.

388 105 493 26 abstain
388 101 489 22 abstainer As you scan the list of words and
388 110 498 31 abstains the index for each, note the sepa
392 104 496 29 bright ration of index values for some:
392 101 493 26 brighter (e.g., "abstain", "itan", "ghost")
392 115 507 40 brightest — and then look at the listings
420 101 521 2 item of words beginning with "b", where
420 122 542 23 itemize our entries collide badly.
420 109 529 10 itens
392 101 493 26 beaker When we picked the next-to-last
392 97 489 22 beak character to resolve collisions,
392 97 489 22 bead we failed to allow for the fact
392 101 493 26 borden that "bored" and "borden" and sim
392 101 493 26 bored ilar entries will always collide.
392 101 493 26 border Vfe tried many different ways to
408 111 519 52 fox form indices without much luck.
408 101 509 42 foxes
408 120 528 9 foxy We can choose instead to use the
412 115 527 8 ghost next-to-next-to-last character (or
412 116 528 9 ghosts any other combination) but soon
412 101 513 46 ghosted wonder what we'll do about short
392 105 497 30 brim words (how do you separate "fox",
392 109 501 34 brims "foxes" and "foxy" if you don't
392 110 502 35 brimming use the last characters?) . Well,

we tried using the values of more characters
we tried the next-to-next-to-last;
; tried various weighting schemes.

None of thorn improved performance significantly— but all the more complex meth-
ods did significantly slow down hashing.

SuperPET Gazette, Vol., II, No.. 10 -293- April/May 1986

We decided that the solution to collisions lay not in a more sophisticated hash
ing algorithm, but rather in a acknowledging and compensating for collisions,
as with death and taxes. The next article covers that approach.

DOUBLE HASHING AND SOME When a new entry hashes to the same location as an
SIMPLE VARIATIONS entry already in place, the obvious solution is to

rehash and generate a new key or index. This is
called "double hashing." Vfe start with a very simple method. It creates a new
key by adding a constant offset to the old "key" each pass throught a rehashing
loop until it finds a free spot in the matrix. See method at left, below. It

efficiently generates a series of unique
numbers, none of vriiich is ever duplicated,
which in time will fill every elanent in a
matrix. Vfe show below a series generated by
the algorithm for a matrix of 50 elements.
Take our word for it that every nunber be
tween 1 and 50 is in it. The method also
generates a series which is unique for any
specific key. You may load a matrix 100%

full with this algorithm (if you’re careful on several points we'll note below),
since each series generates every element in a matrix:

Re-Hashing Keys Generated in Matrix of 50 for the Key of 25
34 43 2 11 20 29 38 47 6 15 24 33 42 1 10 19 28 37 46 5
14 23 32 41 50 9 18 27 36 45 4 13 22 31 40 49 8 17 26 35
44 3 12 21 30 39 48 7 16 25 <— The last key generated is the original.

The algorithm above will not always generate all the elements of a matrix the
matrix size is not a prime nunber. You may avoid this restriction very easily:
if the size of the matrix is an even number, the offset must be even; likewise,
with odd-sized matrices, the offset must be odd. The offset itself may range

from 1 on up to the size of the matrix -1;
sometimes larger offsets work well; sometimes
they don't. If you watch these two points,
you may use matrices sized to any positive
value; double hashing inevitably will find a
home in any unfilled matrix for any entry.
Double hashing is efficient in both high-
level and assembly languages.

Once you work with constant offset, you see the flaw: The series of numbers gen
erated by key 25, when rehashed, is always the same. In the series above, the
first rehashed entry goes into location 34, the second to 43, the third to 2.
Always. Should you have a fourth word vhich keys to element 25, you must inspect
and discard the first three locations before you find room for the new entry.
While double hashing with constant offset obviously should delight a mathemati
cian's heart, it doesn't delight anybody with its performance.

First Variation on the Thane: Are there simple ways around the problem above?
The answer is yes, but none of the solutions is a universal panacea. We now ex
amine the first. We use double hashing with a variable offset— which will rarely
generate the same re-hashed series for any key (the series for 25, above, will
almost always be different). As with constant offset hashing, this method gener-

Offset < matrix size

Offset and matrix size must be
both odd or both even,

or
Matrix size must be prime number

key% is previously hashed key

while matrix$(key%) > ""
key%=mod (key%+offset%,size%)+l

endloop

size% is size of matrix

SuperPET Gazette, Vol. II, No. 10 -294- April/May 1986

ates all the values in a matrix; it sometimes wastes time by generating a non
unique series for a re-hashed key (a series similar to that for some other key).
Even so, it's more efficient than constant offset hash in all circumstances we
have tested. We define the variable offset method below:

pop% = ord(last character) The variable offset is defined from the last
character of the word (as pop%, at left). In

while matrix$ (key%) > "" all other respects, this method is the same
key% = mod (key%+pop%,size!)+1 as constant offset— "pop%" merely being sub-

endloop stituted for "offset". Ranenber that double
hashing won't work properly if matrix size

and offset are not matched (both odd or both even) . If one is odd and the other
even, you obtain a few (sometimes only four) good new indices, and then repeat
the same new keys infinitely, as in: 43, 34, 2, 28, 43, 34, 2, 28, 43— which
would seem to force us to make "pop%" either odd or even to match our matrix.
Nevertheless, we can use this simple method as-is, most effectively. We'll call
double hash with a differing offset "delta hashing" for want of a better name.

Because we know that any rehash after the fourth new key may begin to repeat, we
abandon delta hashing after the fourth rehash and simply incranent or decrement

the last key until we find a hcrne for a new
pop% = ord (last character) entry. Although this is certainly not ele-
while matrix$ (key%) > "" gant, _it _is the most efficient method we
key% = mod(key%+pop%,size%)+l have found for hashing words into matrices
j = j + 1 up to 80% loaded. The reason is not hard to

until j => 4 find— any hashing sprinkles entries into
while matrix$ (key%) > "" small clunps in a matrix; when the loading

key% = key% - 1 factor is .8 or less and rehash fails four
if key% < 1 then key% = size% times, you have jumped from cl imp to cl imp,

endloop and simply sneak away from the clumps with
a few decrements or increments. It works.
In actual runs, the "decranent" feature was

never needed in matrices loaded to 60% or less. In trials, we decremented, so we
call the method "delta hash with decrement". Increment should work just as well.

Second Variation Since plain delta hashing will generate every elanent in a
matrix (provided the matrix size and offset are both odd or both even) , we re
vised the method to insure that "pop%" was always even to match our matrix. This

(call it: delta hash with even offset) is
while matrix$ (key%) > "" far and away superior in heavily loaded

key%=mod(key% + pop%, size%)+l matrices, but not nearly as good in the
if fp(key%/2) then pop% = pop%+l lightly loaded ones. The choice of method

endloop depends on the application. This method
can be modified to use only odd numbered

offsets if your matrix size turns out to be odd.

while matrix?(key%) > "" Third Variation Last, we sized matrices
key%=mod (key% + pop%, size%)+l to prime numbers and used the plain vari-

endloop able offset algorithm we began with (left).

In the table below, we compare the performance of the three variations on a
matrix of 160 (it was 163 for the prime version; we adjusted the results to make
results comparable) for three different load factors:

SuperPET Gazette, Vol. II, No. 10 -295 April/May 1986

60% Loading
Prime Deer. Even

Passes to insert
Worst Item 4 4 6

Entries Placed
in 1st or 2nd 90% 94% 89%
Hash (Per Cent)

Total Collisions 39 36 48
(Rehashes Needed)

See the efficiency with which randan items are stored in a 60% loaded matrix. In
the best algorithm, only 6% must be hashed more than twice. Because any search
algorithm will hash in the same way, you may recover 94% of the items from a
matrix in no more than two hash passes.

As you can see, there is no all-around winner. Be warned that the results above
depend upon the list hashed; they'll change if the distribution of words in the
list changes. For the type of list we worked on, we favor delta hash with decre
ment for lightly to moderately loaded matrices, but would use an even delta hash
if they were densely packed. Delta hashing to a matrix sized to a prime number
is a pretty good bet under all conditions— if a prime number is close to the
size of the matrix you need.

So far, we've discussed hashing entries into a matrix. How about searching the
matrix to find or compare them?

* * *

ON SEARCHING A HASH TABLE When we found that our searches for words not in a
hash table were mighty slow, we suddenly realized that any null entry in a table
ends the search. The hashing algorithm stuffs an entry into the first null posi
tion it finds. You therefore must end a search for a "not there" item as soon as
you encounter a null entry. It’s very hard to find a null entry in a matrix 100%
loaded, so don't try. You search for an entry using almost the same algorithm
which emplaced it (see program, below).

We pull all the pieces together in the short demonstration program below, which
employs delta hash with an even value for "pop%". We tailored the program for
small matrices (20 - 60) , and adjusted the value of the original key for them.
Provide your own list of words as input. Try the program with matrices lightly
loaded and almost full; vary the ways in which the key is generated; change it
to a decrement delta hash; to a prime hash; enjoy yourself, and, above all, be
sure the matrix size is even (or meets the requirements of the type of hash you
enploy) !

Delta_Even, a Delta Hash and Search Program for Snail Matrices

Provide your own input list from disk, program or keyboard

input "Eiiter size of matrix: ", size%
input "Enter loading of matrix as decimal fraction: ", loading
option base 1 : dim matrix?(size%) ! "loading" must be a REAL variable;

! all other variables are integers,
for i% = 1 to size% * loading ! HASH ENTRIES, FOEM MATRIX

80% Loading
Prime Deer. Even

7 6 11

78% 85% 84%

114 97 101

Full Matrix
Prime Deer. Even

42 122 31

66% 71% 70%

445 866 418

SuperPET Gazette, Vol. II, No. 10 -296- April/May 1986

...input data as "word?"
long! = len(word$) : toggle% = 0
sum% = (ord(word?(1:1)) * 4) + ord(word?(long!-2:long!-2))
key! = mod(sum!,size!) + 1 ! Generate original key.
while matrix?(key%) > ""
if toggle! = 0 ! Rehash if required.

pop% = ord(word?(long!:long!))/3 ! Make analler for small matrices,
if fp(pop!/2) then pop% = pop% + 1
toggle! = 1

endif
key% = mod(key!+pop!,size!) + 1

endloop
matrix?(key%) = word? ! Enter word in open matrix elanent.

next i%
mat print matrix? ! Examine the matrix on screen.

loop ! SEARCH LOOP
input "Enter word to be searched for: ", word?
if word? = "Mother-in-law" then quit
long% = len(word?) : toggle! = 0
sum% = (ord(word?(1:1)) * 4) + ord(word?(long%-2:long%-2))
key% = mod(sum%,size%) + 1
while (matrix?(key!) <> word?) and (matrix?(key%) <> "") ! Note change from

if toggle! = 0 ! Entry algorithm,
pop! = ord(word?(long!:long!))/3 : toggle! = 1
if fp(pop!/2) then pop! = pop! + 1

endif
key! = mod(key!+pop!,size!) + 1

endloop
if matrix?(key!) = word?
print "Entry found at elanent"; key!

else
print "Entry not found."

endif
endloop

Is hashing a subject now neatly settled? No. What will happen if we delete an
entry (create a null entry) and then search for a different entry? Our search
algorithm will stop searching when it finds any null in its path... Unless you
expect to revise a matrix, this is no problem. But if you do, you must solve it.

PASCAL : CALLS AND LOCAL PARMS Perhaps Gazette readers would like an explan-
By Marvin E. Cox ation to slice through the fog of call by

4900 West 96th Street address, call by value, and local parameters
Oak Lawn, IL 60453 in Pascal. Call by address is also known as

call by name and is identified in a heading
as 'var variable:type'. Call by address gives both input to and output from the
block by means of the variable. A function name declaration is also a special
call by address. There is no 'var' but the function name does permit input to
and output from the block.

Call by value occurs only in a heading and is identified as 'variable: type'.
Call by value permits input to the block via the variable but does not permit
output from the block via that variable.

SuperPET Gazette, Vol. II, No. 10 -297- Apri1/May 1986

A local variable is declared as 'variable:type' in the body of the block. The
local variable does not permit either input to or output from the block via that
variable.

A global variable is declared in the main program as 'var variable: type' . The
global variable permits communication with any block without parameters via the
global variable. Any function or procedure which has no variable declarations
in either its heading or body treats all variables in the main as global vari
ables.

Local variables generally avoid side effects. Call by value requires that the
programmer be alert to avoid side effects. Call by address may cause even more
side effects. Global variables are usually avoided because inadvertant dupli
cation of variable names with those in the blocks can become a disaster.

The programs which follow demonstrate the methods we have examined.

program call_by_address(input,output); The printout is:
var number:real;
procedure squarel (var callin:real); A 10.2000'
begin B 104.0400
writeln('A ' ,callin:8:4); C 104.0400
callin:=callin*callin;
writelnfB ',callin:8:4)
end;

begin
nunber:=10.2;
squarel(nunber);
writeln('C ',callin:8:4)
end.

In the procedure above, the procedure heading parameter 'callin' is preceded by
the keyword 'var'. This permits transfer from main to the procedure and also
permits transfer frcm the procedure back to main. The writeln(A ',callin:8:4),
etc., allows us to match the printout to the program listing so we can easily
trace what is going on in this call by address.

If we remove the keyword 'var' frcm procedure square2 heading which follows, we
have call by value. In procedure square2 the call by value heading permits us
to transfer of the variable from main to the procedure square2 but will not per
mit transfer of the variable from procedure square2 back to main.

program call_by_value(input,output); The printout is:
var nunber:real;
procedure square2(callin:real); A 10.2000
begin B 104.0400
writeln('A ' ,callin:8:4); C 10.2000
callin:=callin*callin;
writeln('B ',callin:8:4)
end;

begin
nunber :=10.2;
square2(nunber);
writeln('C ',nunber:8:4)
end.

Super PET Gazette, Vol. II, No. 10 -298- April/May 1986

If we completely remove the parameters from the next procedure heading (sguare3)
and declare the variable in the procedure declaration section, we obtain a local
variable in the procedure. If we wish, we can use the same variable name in the
procedure as we did in the main— but the two variables with the same name can
concurrently have two different values. This effectively isolates the procedure
from the main and from the other procedures vAiich use local variables. It gives
us the ability to use freeze-dried procedures without much regard to duplication
of variable names.

program local(input,output);
var nunber:real;
procedure square3;
var number:real;
begin
number:=6.0;
writeln('A ',number:8:4);
number:=number*number;
writeln('B 1,number:8:4)
end;

begin
nunber: =10.2;
square3;
writeln('C ',nunber:8:4)
end.

Global variables are declared in main as 'var variable:type', while the proced
ure is lacking in header parameters and in declared variables. Global variables
give the superficial appearance of being very easy to use but create pitfalls
for the unwary. Global variables generally preclude the use of freeze-dried
procedures in a program.

program global(input,output);
var nunber:real;
procedure square4;
begin
nunber:=6.0;
writeln('A ',nunber:8:4);
nunber: =nunber* nunber;
writeln('B ',number:8:4)
end;

begin
number:=10.2;
square4;
writeln('C ',number:8:4)
end.

As you can see, the four examples above all give different results. Each is a
tool and each should be mastered.

A function in Pascal is a special kind of call_by__address procedure in which
both the procedure name and a call_by_address variable in the heading are re
placed by the function name. This revised heading can in turn contain call_by_
address parameters, call_by_value parameters, or variables can be declared in

The printout is:

A 6.0000
B 36.0000
C 36.0000

The printout is:

A 6.0000
B 36.0000
C 10.2000

SuperPET Gazette, Vol. II, No. 10 -299- April/May 1986

the declaration section. Thus, functions follow the same rules as the procedures
we just reviewed. You may readily convert procedures to functions; functions
can be easily converted into call_by_address procedures. As an illustration,
function square5 below is the conversion of procedure squarel, printed above.

program conversion(input,output);
var number:real;
function square5(number:real):real;
begin
writeln('A ',number:8:4);
nunber: =nunber*number;
writeln('B ',nunber:8:4);
squar e5:=number
end;

begin
nunber:=10.2;
nunber :=square5 (nunber);
writeln('C 1, nunber: 8:4)
end.

The printout is:

A 10.2000
B 104.0400
C 104.0400

Note that the printout is iden
tical to that for proc squarel.

[Ed. Note: A lot of you have run into keyboard bounce. We've updated this arti
cle on how to cure bounce with some new and better ways.]

BABIES, NOT KEYBOARDS,
SHOULD BOUNCE

When your 'a' key starts to print 'aa' or your keypad
doesn't SHIFT when you press SHIFT, you are faced
with dirt in the keyboard enclosure. Being over 300

miles frcm our dealer, we gave him a call vrtien, after 9 months, the keyboard on
one SPET became non compis mentis. He advised us to take it apart and clean it.
We did. It worked. Since that 'first time, we've learned a lot about how to avoid
keyboard 'repeat' problems. We cover two routes below: (1) surgery, which cures
the patient for quite a while, and (2) palliation, which postpones it.

Option 1: Surgery. If you can handle simple tools, surgery is easy but takes
about two hours. Disconnect powsr and open SPET. You'll see a host of Phillips-
head screws holding the keyboard sheet-metal enclosure. Disconnect the aft cable
connector gently and then remove the screws, the enclosure, and the keyboard it
self. Clean the enclosure and under the keys. An air hose at low pressure works
well for the latter. Then buy seme thin foam insulating tape (see below).

Get a good, small screwdriver. Turn the keyboard over. You will see a multitude
of tiny screws, which hold the epoxy-glass keyboard bottom to the keyboard. Re
move them (tweezers come in handy). Then HALT. Below, left, is what you'll see:

As you might expect, the two wires which run
between the edge connector and the interior
of the keyboard are too short to let you re
move the bottom of the keyboard. Cut at 'x'
or unsolder then at 'o'. They're color-coded
to prevent reconnection problems. Then gent
ly remove the bottom board, and behold the
small, dead spiders, renains of lunches, and
similar debris. We cleaned the outside and
inside with clean cotton swabs lightly soak
ed with rubbing alcohol. Suggest you not
rub long or hard on the gold printed capaci-

View of Keyboard, Upside Down

More foam tape

Foam tape
hold ing
wires

Male edge connector

SuperPET Gazette, Vol. II, No. 10 -300- Apri 1/May 1986

tors and circuits on the interior of the board. When the board is clean, you've
solved half the problem.

The other half lies in the glaze of dirt on the black, graphite-impregnated tips
on the keyboard key contacts. Each key tube ends in a gray rubber diaphragm; on
the bottom of each diaphragm is the black, circular contact you must clean. The
glaze does not come off easily. You can clean with swabs and alcohol, but you'll
be bouncing again in two weeks. Best method: take diaphragm out with tweezers;
slip it on the eraser-end of a pencil, and twirl the black contact on a piece of
flat, clean aluninun oxide sandpaper (150 grit is fine) . Don't take off more of
the black contact than is necessary to remove the glaze. Note how jet-black the
sanded contacts are. Keep the pencil vertical (keep the black contact FLAT). Be
sure not to leave a whisper of glaze. The black dust from sanding, and grit from
the sandpaper, is deadly. Keep it away from the keyboard! Clean the diaphragm
thoroughly before you insert it in the keyboard again.

With everything squeaky-clean, put the bottom board back on the keyboard; thread
the two wires through the holes marked 'o' on the diagram above. If you can sol
der, solder the wires together again (rosin flux only— NO zinc chloride, unless
you like hydrochloric acid in your connections!). If you cannot do a solder job,
use the thinnest crimp-on connectors you can find (no thicker than the foam
tape) . Now put those tiny screws back in to hold the bottom board. This done,
replace the missing foam tape; insulate the spot you cut the wires with a couple
of flat layers of vinyl electrical tape. You're ready to put the assembly back
in SPET.

One last tip: shim the FRONT keys of the board away from the plastic case with a
few layers of thin cardboard before you tighten the screws. With SPET open, the
keyboard wants to fall down hill; it crams the top row of keys so tightly again
st the case that they won't move— unless you shim to space than properly. When
all screws are tight, remove the shims.

We've cleaned and reconditioned keyboards twice a year since we bought our ma
chines, with utter success. Both SPETs operate perfectly today. Commodore has
not reviewed the procedure; you proceed at your own risk.

Option 2: Postponing Surgery. With SPET off, slip a thin-bladed screwdriver
under the offending keycap; pry up gently until key and return spring came off.

Insert a clean Q-tip in the key well, and gently
Vertical Cross-Section rotate the top of the Q-tip in a circle, pressing

gently down. Then reverse the rotation. You thus
<— Key tube scrub the rubber key contact against the printed

capacitor on the base board. This usually cleans
__<— Rubber cap both sufficiently to get rid Of 'repeats'— for a

\ while, but it is not a permanent cure. You prob-
Epoxy-glass keyboard base ably will have to do it again in a month or so.

You have yet another palliative, which takes a little longer but also is longer-
lasting. After the scrubbing above, get a piece of pipe-cleaner [the fuzzy l'il
worm with which you clean tobacco (not plumbing!) pipes]. Cut a piece just long
enough to reach frcm the bottom of the well to the keycap when installed. Wrap
both top and bottom of this with cotton, as though it were a Q-tip. Stuff it in
the well. You'll have to try a few times to get the length just right. Keep a
sample for next time! Then stick the keycap back on. The additional pressure ex-

SuperPET Gazette, Vol. II, No. 10 -301- April/May 1986

Review by Tom Stiff
In my work, I accumulate a lot of data;
data that must eventually be analysed. As
anyone who has had to handle large
amounts of data will attest, the best way
to begin to understand the meaning of
large blocks of related data is to display
it graphically. The old adage “a picture
is worth a thousand words” never held
more truth than in the field of data
analysis.

In a single night’s observing at the
York University Observatory, I can easily
accumulate more than a megabyte of data
in the form of digitized one dimensional
stellar spectra, or a few dozen megabytes
in the form of two dimensional digitized
astronomical images. Producing a hard
copy of these images is very expensive
and time consuming. A fast graphics ter
minal seemed to be the best solution, and
I began a search for a PET or Super PET
graphics package.

Months of letter writing, phoning and
searching through back issues of every
Commodore-related magazine failed to
produce any satisfactory results. In the
Spring of 1984, there were three
manufacturers of hi-res boards, all for
65xx based machines (designed for PETs,
but not for SuperPETs); all were priced
over 600 dollars (US); and none offered
a screen resolution any better than the
C-64.

Each system also had serious design
flaws that made them unsuitable. One
used up a lot of the PET’s memory,
another required major hardware
modifications and yet another limited the
PET’s capabilities by redefining some of
the PET’s BASIC keywords to incor
porate graphics commands.

At the 1984 Annual TPUG meeting, I
discovered High Res Technology’s booth,
and described my graphics needs to Dan
Deconinck. He seemed optimistic about
designing a suitable graphics board. That
summer, Dan contacted Avygdor Moise
(of OS-9 fame, and also author of PET-
COM) at York University, for details

about the 6809 side of the SuperPET.
Since my graphics needs were relatively

modest, Dan also asked Avy for addi
tional ideas and suggestions. Gradually,
a prototype graphics card began to
emerge.

During the next year, two prototype
boards were produced. Each was
demonstrated at a meeting of the
SuperPET User’s Group, and each time
ideas for enhancements were solicited.
Ideas thrashed around during these
meetings led to further board revisions
and improvements. In the early spring of
1985, HRT felt that their card was ready
to ‘field test’. Accordingly, they installed
their graphics card in my SuperPET.

The graphics card was fully
transparent and did not interfere with
any PET functions, nor did the card use
any of the PET’s memory. In other
words, with the card installed, I was total
ly unaware of its existence. I could tack
graphics sub-routines onto any existing
program and the program would run
perfectly!

I have been using an early version of
an HRT graphics card for about ten
months now, and I am extremely pleas
ed with its operation. I use the graphics
capabilities of my SuperPET to analyse
stellar spectra. A typical spectrum (call
ed a frame) is 500 pixels in length. The
spectra are taken with a silicon-
intensified television videcon (a sort of
fancy digital TV system). All of the obser
vatory’s instrumentation, by the way, is
controlled by an ordinary PET 2001.

The data are written onto a floppy disk
for temporary storage, then handed over
to a VAX 8600 for large-scale ‘number-
crunching’. I then download the reduced
data from the VAX to my SuperPET, for
graphics display. The graphics program
I have written is entirely in BASIC, and
has been compiled, using PETSpeed.

It takes about thirty seconds to create
a full screen image consisting of over 600
line segments. Most of this time is taken
by the SuperPET, to execute an auto
scaling subroutine to a VAX 780 system
using a VT100 terminal and operating
with normal daytime user-loading. To
generate an equivalent hard copy
graphics display takes about twenty
minutes, using an H-P plotter! Further
more, the HRT card allows me to overlay
an infinite number of frames for com
parison if I need to do so, or to simply
display them, one at a time. The images
can be scrolled off the screen, if I wish
to plot more data; and instantly scrolled
back, if I want to view them again.

With the birth of Super-OS/9, addi
tional enhancements were made last sum

mer to increase the graphics board’s
capabilities, and to further increase the
screen resolution. Screen resolution is
700 pixels on 80 column PETs, and 640
by 200 on 40 column PETs. But — and
this is a nice feature — the total resolu
tion is 1024 by 512 pixels, and the screen
can be scrolled in all directions.

The graphics card is easily installed in
to any PET or SuperPET. It requires no
external power supply, no soldering, and
no other hardware modifications. The
board simply plugs into the main board’s
6502 slot, and the 6502 chip is moved to
the graphics board. It works equally well
on either the 6502 side or 6809 side of the
SuperPET and — as if that weren’t
enough — it is perfectly compatible with
OS-9. The icing on the cake is that OS-9
users can also use the graphics card’s
memory as a 64K RAM disk.

The main problem with this card is that
software is scarce. You will have to write
your own — in machine language, if you
want it to be fast. I have a feeling that
this will not be a problem for long, since
there are several users that I personally
know of (and probably many others) that
are already developing graphics utilities
that will be placed in the public domain,
via TPUG.

I have also heard rumours that PH.D.
Associates will be marketing a version of
PETCOM which will support VT100 and
maybe VT240 graphics with HRT’s
graphics board. Perhaps this upgrade will
also be available to registered PETCOM
users for a modest fee. (Are you listen
ing PH.D. Associates?)

This card is the finest and best design
ed piece of graphics hardware on the
market today for any microcomputer —
and at any price. This little card has many
excellent features and, in some areas, it
out-does the illustrious Amiga. For exam
ple, I use the graphics card to produce a
‘plotting window’ on the top two thirds
of the screen while I simultaneously use
the bottom third of the screen to edit pro
grams, as well as to display numerical
results as they are being calculated. In
fact, the normal text screen can overlay
the graphics screen. I can choose to erase
either the text or graphics, or both.

If you want to breathe new life into
your old PET and re-kindle some of the
enthusiasm you had the day you first
lifted it lovingly out of its styrofoam
cradle, this addition might be just what
you’re looking for.

The HRT Super-Res Graphics Board,
from High Res Technologies, 16 Engishlvy Way, Toronto M2H SMk. Price $200.00 (US), $225 (Cdn). □

SuperPET Gazette, Vol. II, No. 10 -301A- April/May, 1986

erted at keypress by this mechanical gimmick may keep you going for as long as
a year. Be sure to use the cotton— or the wire in the pipe cleaner may punch a
hole in the rubber contact. Obviously, major surgery takes less time than going
this route for all keys. But— usually, just a key or two act up. If you can get
them under control, you may postpone a major surgery indefinitely.

HIGH RESOLUTION GRAPHICS BOARD The January/February issue of TPUG magazine
FOR SUPERPET holds a first-rate article by Tcm Stiff on

an internally-mounted high-resolution board
for graphics which works with both PETs and SuperPETs. We were so glad to see it
that we wrote the Editor, TPUG magazine and asked for permission to reprint it,
which TPUG gladly gave. That article is reprinted in its original format on the
facing page. Thank you, Tcm and TPUG!

(Article on facing page is copyrighted, 1986, by the Toronto Pet Users Group and
reprinted by permission of the copyright owners.)

BETTER LATE THAN NEVER! 1 Vfe'd have given an arm and leg about four years ago
A Starter Disk in APL for a disk our busy-as-a-bee Associate Editor Reg

Beck just sent in, which is a tutorial on APL, in
APL. We tried to pry such a disk for the beginning APLer out of Barry Bogart,
Steve Zeller, and a gaggle more of APL old hands, but it never quite got put to
gether. Reg has collected that work and has added a lot of his own.

The result is one helluva lot less bafflement and confusion vAien you first dive
into the language. It’s available in either 4040 or 8050 format for $6 from
ISPUG at the address below. Ask for the "Beginning APL" disk if you want one.

If you order, please state your disk format!

Prices, back copies, Vol. I (Postpaid), $ U.S. : Vol. I, No. 1 not available.
No. 2: $1.25 No. 5: $1.25 No. 8: $2.50 No. 11: $3.50 No. 14: $3.75
No. 3: $1.25 No. 6: $3.75 No. 9: $2.75 No. 12: $3.50 No. 15: $3.75
No. 4: $1.25 No. 7: $2.50 No. 10:$2.50 No. 13: $3.75 Set: $36.00
-----------------------------Volume II-----------------------------------

Numbers 1 thru 10: $3.75 each.
Send check to the Editor, PO Box 411, Hatteras, N.C. 27943. Add 30% to prices
above for additional postage if outside North America. Make checks to ISPUG.

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$
APPLICATION FOR MEMBERSHIP, INTERNATIONAL SUPERPET USERS' GROUP

(A non-profit organization of SuperPET Users)
[] Check if you're renewing; clip and mail this form with address label on the

reverse side. If you send the label, don't fill in the form below.

Name:___________________________ Disk Drive: _________ Printer:____________

Address:__
Street, PO Box City or Town State/Province/Country Postal ID#

For Canada and the U.S.: Enclose Annual Dues of $15:00 (U.S.) by check payable
to ISPUG in U.S. Dollars. DUES ELSEWHERE: $25 UJ3. Mail to: ISPUG, PO Box 411,
Hatteras, N.C. 27943, USA. SCHOOLS!: send check with Purchase Order. We do not
voucher or send bills.

SuperPET Gazette, Vol. II, No. 10 -302- April/May 1986

This journal is published by the International SuperPET Users Group (ISPUG), a
non-profit association; purpose, interchange of useful data. Offices at PO Box
411, Hatteras, N.C. 27943. Please mail all inquiries, manuscripts, and applica
tions for membership to Dick Barnes, Editor, PO Box 411, Hatteras, N.C. 27943.
Super PET is a trademark of Commodore Business Machines, Inc.; WordPro, that of
Professional Software, Inc. Contents of this issue copyrighted by ISPUG, 1986,
except as otherwise shown; excerpts may be reprinted for review or information
if the source is quoted. TPUG and members of ISPUG may copy any material. Send
appropriate postpaid reply envelopes with inquiries and submissions. Canadians:
enclose Canadian dimes or quarters for postage. The Gazette comes with member
ship in ISPUG.

ASSOCIATE EDITORS
Terry Peterson, 8628 Edgehill Court, El Cerrito, California 94530
Gary L. Ratliff, Sr., 215 Pemberton Drive, Pearl, Mississippi 39208
Stanley Brockman, 11715 West 33rd Place, Wheat Ridge, Colorado 80033
Loch H. Rose, 102 Fresh Pond Parkway, Cambridge, Massachusetts 02138
Reginald Beck, Box 16, Glen Drive, Fox Mountain, RR#2, B.C., Canada V2G 2P2
John D. Frost, 7722 Fauntleroy Way, S.W., Seattle, Washington 98136

Table of Contents, Issue 10, Volune II
Schematics— Last Chance....... Gazette Will Cease Publication...,...273
Commodore Far from Bankrupt.... Indenting Printer Output.......
3-Board Bug in OS9............ National Repair (?) Center...... ,...275
Visicalc Instructions......... .276 Bug in Bedit 2...............
Better Ways to Exit Procedures.. .282
Direct Disk Access, Part II.... Hashing.......................
Double Hashing................ Pascal : Calls & Local Parms...
Curing Keyboard Bounce........ High Resolution Graphics Board...
Starter Disk in APL...........

SuperPET Gazette
PO Box 411
Hatteras, N.C. 27943
U.S.A.

First Class Mail
in U.S. and Canada.
Air Mail Overseas.

